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The fourth order Hamil tonian of an asymmetric rotor molecule of orthorhombic sym
met ry given recently has been considerably reduced in complexity through the use of 
equations derived from the basic relationship among the angular momentum operators. 
The reduced Hamil tonian obtained provides a most convenient s tar t ing point for the 
calculation of rotat ional energy levels from a solution of the complete secular equation, 
for a per turba t ion theory solution to the problem of centrifugal distortion, and for the 
deduction of sum rules among the energy levels. 

1. Introduction 

Recently Chung and Parker [1] 1 have examined the general molecular vibrational-rota-
tional Hamiltonian in the Goldsmith-Amat-Nielsen [2] formulation. They deduced Hamil-
tonians for asymmetric rotor molecules of orthorhombic, monoclinic, and triclinic point group 
symmetries and have included in their work all terms in P 4 to the fourth order of approximation. 
No terms in P 6 were included in their work, nor will they be included subsequently in this. 

For the case of the asymmetric rotor Hamiltonian for molecules of the orthorhombic 
point groups (C2v, V, and Vh) it is possible to reduce the Hamiltonian considerably and, by a 
redefinition of coefficients, to make valid a considerable body of previous work. I t is our 
purpose to carry out these reductions, relate the results to previous work, and to provide a 
first order perturbation theory solution to the problem of centrifugal distortion, which, while 
entirely equivalent to that of Kivelson and Wilson [3], is in somewhat simpler form. 

2. The Hamiltonian 

We start with eq (17) of Chung and Parker in the molecular axis system of coordinates 
defined by the standard spectroscopic convention Ie

a<^Pb<CIe
c. The following relations among 

the angular momentum operators that are useful for reducing the Hamiltonian may be derived 
from the commutation rules for the angular momentum operators. 

P2
aPl+PlP2

a=P*+P*-P*-PI-2P2P2
y (1) 

PaP^P aP^ + ^ P a P ^ a = P 4 + P t - ^ - ^ - 2 P 2 P H ^ ( ^ - ^ - P § ) (2) 

PaPlPa = UP*+P*-Pi-Pe-2P2Pl+2K\P2v-Pl)] a*p^y=a, b, or c (or x, y, or z). (3) 

With the help of these relations we obtain a reduced Hamiltonian for molecules belonging 
to the orthorhombic point groups, 

H =flv -\-^_jOivPa—2,P 2-JTVppyyP<z\4 2—lT*ct&pP T 4 Z j ( T a a a a T " ' ' J j J 7 7 TaapQ Taayy)P<x 
a a a a 

a^^9£y=a, by and c in cyclic order. (4) 

i Figures in brackets indicate the literature references at the end of this paper. 
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In (4) the following definitions have been used for the constants 

c£=av. + lh2T>a (5) 

in which the ay are the 21, SB, and E of Chung and Parker and where the A, B, and C of 
Chung and Parker are the reciprocal of twice the respective moments of inertia. Also: 

TV
a = 3 Tpypy + P/3707 + P077/3 + PyPPy — 2Tapap ~ PafiaP — P/3aa/3 _ 2Tayay — payay — Pyaay (6) 

(7) 

Taa/3/3=Taa/30 + 2Ta/3a/3 (8) 

Taa/3/3 = Taapp + Paa/3/3 (9) 

2Tafla/3 = 2 T a / 3 a ^ + p«/3a/3 + i (Pa/3/3a + P/Sactf) • (10) 

In the preceding AJ* and the ra^b and pa/s75 are those of Chung and Parker, the Tapy& 
of Chung and Parker being the reciprocal of ffi times those of Kivelson and Wilson. 

This convenient form of the Hamiltonian reveals that a constant similar to Dj in the 
energy expression for linear, spherical and symmetric rotors may be defined, that is, a coeffi
cient of J2(J-\-l)2 in the energy. Since this term is diagonal in J, K, M it may be factored 
out of the secular equation before its solution. 

The cyclic nature of (4) indicates that this Hamiltonian may be solved using the systematic 
procedures introduced by King, Hainer, and Cross, [4] after extension of the latter to contain 
the matrix elements of the operators Pi, by the choice of the most convenient representation, 
Ir . . . . IIP, defined by King, Hainer, and Cross (see table II , ref. 4). 

Defining the effective rotational constants Av, Bv, and Cv in energy units as: 

av=a'vfl
2, (11) 

remembering that P*=P2(Pl + P2
y-\-P

2
Z), and using the definition: 

_ » -V -V -V / i n \ 
'act—'0077 'yyact 'aa/3/3; V 1 ^ / 

where a, fi and y are taken as a, 6, and c in cyclic order, we arrive at the following most 
convenient and explicit form for the vibrational-rotational part of the Hamiltonian: 

H=W-h\*= [AV/K2-J(J+1) (fi2/4)rjJP2 + [Bv/Ji2-J(J+1) (h2/4)rU] P\ 

+ [Cv/h
2-J(J+1) (ft2/4) rlc]P2

c + i(rlaaa+ rla)Pt 

+ i(^"6 6&6+ Tlb)P\~\- i(Tlccc-\~ Tec)P\ (13) 

In (13) no cross terms between the components of the angular momentum appear explicitly 
and the secular equation is readily set up using only the matrix elements of P2,, PI, P2

C, P\, 
Pi and Pi. 

In order to make use of the systematization introduced by King, Hainer, and Cross the 
elements of P% and P% must be used in the same phase as they chose for Px and Py. Nowhere 
in the literature are these elements given using this phase. They are, however, readily deduced 
from those given by Wilson [5] since the only change required from his matrix elements is a 
reversal in sign of the K, K±2 elements of P% and P%. 

The coefficients of P\, P\, and P\ can be regarded as effective inertial parameters with a 
J dependence in setting up the secular equation. Since the secular equation has no mixing 
between blocks of different J-factors, this observation can be used to reduce the work in solving 
the secular determinant. One merely uses a different set of effective inertial parameters for 
each J-factor. 
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Each J-factor can be further factored as in the case of the rigid asymmetric rotor into 
four factors that can be called E± and 0* in complete analogy with the rigid case. These factors 
are conveniently written as: 

and 

E± = 

0* = 

£ 0 0 

•\2Eo2 

<y[2E~u . 

0 

0 

(En±E^ 

E\* 

Eu 

0 

0 

V2#02 

(E22±E2-2) 

£ 2 4 

E2Q 

0 

-1) £13 

£ 3 3 

£ 3 5 

£ 3 7 

0 

-\2Ei 

£ 1 5 

£ 3 5 

£ 5 5 

£ 5 7 

£ 2 4 

£ 4 4 

£ 4 5 

• 

4 

0 

£ 3 7 

£ 5 7 

£ 7 7 

. 

0 

£ 2 6 

£ 4 6 

£e6 

• 

0 

£ 5 9 

£ 7 9 

• 

0 

£48 0 

£68 £ 6 . 10 

• 

. 

0 

£7.11 

. 

(14) 

where £ is obtained from £ + by removing the first row and column as indicated by the dots. 

3. First Order Perturbation Theory 

Equation (13) forms a convenient starting point for a perturbation treatment. In a 
first-order treatment the desired energies involve only the diagonal values of the perturbing 
operators. Consequently, eq (13) may be rewritten using only the average values of these 
operators in a representation in which the semirigid energy is diagonal, 

£ = £ ^ + K r L a a + r L ) < P 4 a > + i(TU&& + r U ) < P t > + i ( r ^ c + r L ) < P t > . (15) 

The values of < P £ > , <CP\^>, and <^P^> can be obtained from the work of Schwendeman [6]. 

For some purposes it may be convenient to use the symmetric rotor type centrifugal dis
tortion constants given by Kivelson and Wilson rather than the Tv

afiy9. These centrifugal 
distortion constants of Kivelson and Wilson can be given accurate to the present order of 
approximation of the Hamiltonian by simply replacing the T^T 5 of Kivelson and Wilson by rv

a^h. 

4. Sum Rules 

Recently sum rules for the energy levels of an orthorhombic asymmetric rotor have been 
published [7]. By the substitution mentioned above in a I7 representation [4] these sum rules 
can be made valid to the present order of approximation. To obtain these sum rules substitute 
the right hand side of the following equations for the terms on the left hand side which appear 
in the sum rules. 

A=AV 

B=BV 
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* * 8 — J Q D K — J Q [(TV
aaaa-\-Tll>tlb-\-T

V
cccc)-\-(T

V
aa-\-Tlb-\-Tlc)] 

~ h (15DJ+5D-™+3DK)=^O [ ( ^ « . . + TS„» + TJMC)-X (rla + TU + r'J] 

^ - 2 5 y - i z > x = i [ ( r L a 0 + T ^ 6 » - 4 r ^ c ) + (TL+T^ + TL)] 

DJ+28J-~DK=± [(TSS88 + r'eM-4rJM») + (rS. + T'M + T?e)] (16) 

Z > y - i ? 6 ~JQDK~ [{TVaaaa-±Tlhbb-4:Tlcce) + (.Tla+Tlh+Tlc)] 

6Bt-{~Dx=^ [(3rJ„»+3TSeee-2T08„)+(3T5»+3T»e-2T88)] 

2 ( i J ,+ i J , + KoZ? a : )=^[(3T'« e -2T5M , -2T a 8 8 a ) + (3T»e-2TS,-2TflB)] 

2 (Rs-Rs-HoDK)=^ [(2rlccc+2Tlaaa-3rlbbb) + (2rlc+2rla-3Tlb)]. 

5. Planar Orthorhombic Molecule 
Dowling [8] and Oka and Morino [9] have given relations among the Ta^yS of a planar 

orthorhombic molecule. Noting that the plane of the molecule must be the ah plane these 
become 

_(BX (BeV 
Tbbbb—\TrJ Tbbcc—\~J~ ) TaaW 

_/£Y 4-^Y 

Tcccc I T> I Tbbcc\~\ A J Tccaa 

Taaaa \ /7 / 7"ccaa \ T> ) ^aabb As corresponding relations among the pa^7s of the planar orthorhombic molecule have 
not yet been worked out, no special relations can yet be said to exist among the Tv

a8y8. 

6. Conclusion 
The Hamiltonian of an orthorhombic asymmetric rotor molecule, to the approximation 

considered in this work, has been set up in nine effective constants occurring as coefficients of 
six rotational operators. 

This Hamiltonian appears to be in the simplest possible form, and to provide the most 
convenient starting point for any type of calculation concerning the rotation of this type of 
molecule. 
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